156

INZHENERNO-FIZICHESKII ZHURNAL

TRANSMISSION OF RADIATION BY A MEDIUM IN TWO-DIMENSIONAL PROBLEMS

S. P. Detkov

Inzhénerno-Fizicheskii' Zhurnal, Vol. 10, No. 2; pp. 245—251, 1966

UDC 538.3

General formiulas for the trarismission characteristics of a medium for
the simplest two-dimensional systems with an exponential law of
absorption are given. These characteristics are the coefficients of
irradiation, the coefficients of spatial distribution of the incident
flux, and the coefficient of utilization of a point source. The emis-
sion characteristic of real surfaces is expressed by a cosine power
series.

The transfer of radiant energy in a medium is usu-
ally calculated with allowance for the diffusivity of the
fluxes incident on the medium. Yet the intrinsic or ef-
fective emission even of ordinary surfaces does not
conform to a cosine law. For a semitransparent body
with a temperature varying with depth, the emission
of the surface may deviate very considerably from a
cosine law. If the surface is covered by sources (for
instance, lamps in the case of drying with infrared
rays), the emission characteristic depends on the type
of source. Very diverse characteristics are given by
fluxes of nuclear radiation and molecular fluxes.

The (effective or intrinsic) emission characteristic
of an element of surface can conveniently be expressed
by a series converging in the interval [0, /2] [1]:

f(@) = Eaﬂ cos" @,

n=0

where

ian = 1.

n=0

In some cases it is sufficient to take the first three
terms of the series with odd powers of the cosine [2].
Another characteristic of the emitting element will be
the equivalent solid angle € [2], which is the solid
angle in which an isotropic (in a hemisphere) flux of
the same intensity can be propagated at ® = 0 (normal
to the element):

o

Q=jf(®)dm=2n2n‘:'_‘l. "

o n=0

Henceforth we assume an exponential absorption
law and consider only two-dimensional problems, for
which the special Kip(x) functions, used earlier in
calculations of convective heat transfer [3] and radia-
tion dosimetry [4], can be successfully used. Func-
tions Kin(x) have been tabulated for n from 1 to 16 in
the range 0 = x = 3 [5].

Below we give the essential properties of a Kip(x)
function: '

/2
Ki,(x) = g exp(— x/cos a)cos™ lada,
0

dKi, (%) = — Kip—1 () dx,  Ki,(x) = | Kip—, () dt,
or

Ki (x) = Kin (0) — [ Kips (1) dx, @)

where Kin(0) is a constant of integration.
The recurrence relation

(7 + 1) Kipyo (x) = nKiy () + x [Kip—i(¥)—

— Kipy (21 for n>1, )

Ki,(0)=0, Ki,(0) =V nal (n/2)/2T [(n + 1)/2].
For instance,

Kiy(0)=n/2, Kir(0)=1, Kis(0)=n/4, Kis(0)=2/3,

[ e _ Ki,(x)
J K!rz(x) ot (n_2)x”__2 —f_ (4)
. dx
+\S‘ Kln—l ()C)W fOI‘ fl>2,

(5)
f Kis(r) 2 — 11Ky (00— 2Ky (),
X X

~

as x—>0 j Kiy (x) . - 0.8840685 + Inx. {(6)
x

The connection with modified Bessel functions of
imaginary argument are

Kiy(x) = K, (x),

Kiy (x) = TKO(u) du,

Kia (x) = x [ Ky (6) — [ Ko (u)du] ,

X

2Ky () = (1 -+ 28 [ Ko () da -+ xKo (1) — 2K (1)

The last and further relations are difficult to ob-
tain from the recurrence relation (3).

The transmission of radiation by a medium is
characterized by several quantities.

Coefficient of irradiation. This represents the
density of the direct flux at a point dF; in the case of
unit hemispherical effective flux from surface F,
(Fig. 1). The direct flux includes particles which
have not interacted with the medium:

£, — é Y exp (— EI) f(85) cos O, dF,/L2.

FE
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By means of the substitutions cos®,dF,/1% = dw =
= cosadadf, kl = x/cosc, cos®; = cosacoss we ob-
tain

Ba /2

g

= \ cosﬁd[ﬁg exp (—zi—) i@icos%da. (7
0

e osa ) cos6,

s
%

Mean coefficient of irradiation:

1 .
Pz = 7; j‘ EiodL,
I

where L is the extent of the two-dimensional surface.

Exact calculation of the mean coefficients of irra-
diation is possible only in the simplest examples.
They should be calculated approximately from several
values of the local coefficients of irradiation,

Coefficient of spatial distribution of incident flux.
The density of the bulk incident flux at point dFy is
given by the formula

iy =0 oxp (g [

Fs

The quantity

m =y /E129fF2

shows the spatial distribution of the direct flux inci~
dent on the point dF;. It is of interest in the case of
irradiation of a surface with relief. When all the in-
cident rays are normal to the element of area, m = 1.

as
Fig. 1. General diagram showing position
of surface element dF; and surface T,.

In the case of a diffuse incident flux; m = 2. If the
mean angle of incidence tends to 90°, then m — «. We
will-later give formulas for the product miéyy,

Ba /2

2 7 x \ 1(©)
Eis = d ( p | — —— |-—2== cosada. (8
e Q \ Py exp ( cosan)cos(—).2 cosade. ()

B0
Coefficient of utilization of point axisymmetric

emitter. Here we will continue the work of [6], but
for two-dimensional problems and with due regard

to the absorption of the medium. Let a point source
with emission characteristic f(®;) be placed at point
dFy (Figs. 1,2). We require the determination of its
coefficient of utilization for two-dimensional surfaces
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(for a direct flux). It is easy to arrive at the general
formula

™

w 2

2 o
= Eaj Ki,,» () cos® B dB. (9)
n=0 g
a y v &
’[2 '
B, > 7
a5 a;
C £ d
Ty,
B
ar,

Fig. 2. Cross sections of simple
semitransparent bodies.

Since

for x=0, B=—=/2, Pa=m/2, uy=1,

then, in addition to (1),

3

=3 T/
Q=14Y 2,Ki,.(0) s’ cos?Bdp.
3

|
e

=0
Figure 2 shows the simplest cases, for which
formulas (7)—(9) become very much simpler.
Case A. cos®, = cosa, x is the optical (as regards
attenuation of the ray) radius.

1o = (2/9) (51 fo — 5in 1) ¥ 0K (9),

n=0

my &12 = (2/9) (E’? - ﬁl) 2 anKin+1 (X),

n=0
b B,
w =2 Y a,Kiyz(x) ﬂ cos" pdp.
n=:0 B:

Case B. cos®@; = cosacosf, x = Dcosp, where D
is the optical (as regards attenuation of the ray) dia-
meter.

w
i

" Kiypo (D cos B cos* Bdp =

Eio = uy =

i .
S,

0w

) xtdx
VD —

Kim»?(x

Ki (D‘cos B)cosr—ipdf =

P xn—Idx
Z jKlnu(x)m .

Case C. cos®, = cosacospf, x= 7/cosf, where T
is the optical thickness of the layer.



158
2
~ . T

Eiz == —“Lan Klmz( )cosﬂﬁd(?):
S}n=0 5 osf

== 2 N n+l ¢ ; dx

-2 ngoa . EKW( ) —

2 T

my & = EEan (.K‘rwl ( s ) cos"'gdp=

=g,
2w ¢ d
= E): E apT Kiy oo (x) P sz =

In the limiting cases where £ = —71/2, B, = 7/2
(for an infinite layer of medium)

Ero =y = (2“/9) Z%En+z (t)s

n=0

ﬂ'll,f;lg == (zﬁ/Q)EanEn+1(T). (10)

n=0

The properties of function En(1) have been fully des-
cribed in [7]. .

Case D. cos@®, = cosasing, x = x/sinf, where x
is the optical distance to plane 2. '

2 <0 ﬁ'—‘
. . X .
Eo = a, \ Ki sinn~18cosfd3 =
1 0 2 HV,S\ m—‘l( Sinﬁ) ; pas
n=0 ‘g
2\ d
. X
= a,xy lppoX) ——
QE rz()‘KrH-?()Xn_H’
n=0 ;
o & B .
: . - . X Vo
ﬂllglz :7"(‘)_ \ anS Kln-H( . > )’S'n”-—lﬁdﬁ:
Q - sin
1
@ *1

2 N\, (e dx
— 2- a, X! ‘gKlm.l(x)

1 o 7
Q =) e ¥ l £ x(]
9 o« X (2 oty
X, : . X% — x2yin—n/2
= =" va,l Ki, .o (x) __L_dx
Q ~ s

By successive application of formulas (4) and (5)
we can obtain for &;, an algebraic series without
integrals. According to (6), in the case of ay > 0,
when Xg —~0, X9 =0, X1 — o, §12 = 0,

The problem posed with respect to angular coef-
ficients for f(®) = cos® has been solved in detail in
several papers by Mikk [8,9]. The solution is ulti-
mately obtained by means of tables of Bessel func-
tions and, hence, .is suitable for very simple engineer-
ing calculations, An analysis of the particular solution
proposed here for f(®) = cos® gives different expres-
sions for the main functions used by Mikk:

M(x) = (4/7) Kiz (x)
instead of

M@ = @) [(1+57) | Ko(@de 4 5K (1) — 22K, (9)],

Ny (x) = (4/7) [Kiy (x) — Kig (x)]
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instead of

Ny () = @) [ (1) | Ko () dit— 5Ky () + 52K (9 ]

X

Ny (x) = (4/37) [Kiz (x) — x (Ki1 (x) — Kia (£))]
instead of

N () = (203 2 52) K. (3) - Ko () — (3 — ) { Ko () d].

The expression for function Sy (x) is the same:
Sy (x) = 2E;(x)

[see (1) and (10)].

The expressions in terms of Bessel functions and
integrals of them are a little more complex, the more
the existing tables [10] are complicated by exponential
functions. The tables of Kin(x) functions, however,
are much less thorough. On the other hand, reference
to the tables allows only manual calculation (using a
mechanical calculator), which is inapplicable in the
case of analytically assigned complex configurations
of the volume of the medium.

It follows from these remarks that the use of the
Kin(x) functions can be much more effective if they
are approximated by simple and accurate approxi~
mate formulas. The series derived from function
Ko(x) and used in [5] converge slowly. Primak [4]
suggested using a series for Ki;(x) obtained by ex~
panding the integrand. The formulas for Kiy(x) and
subsequent formulas are formed from Ki(x) by inte-
gration according to (2):

Kiy (x) = /2 — 1.1159315x — 0.1265783%% +
+(1 4 x/12)0.9986x In x;
Kiy(¥) = 1 — rut/2 + 0.8079257x -
40036491 4x* — 0.4993 (1 -+ x%/24) x2 Inx;
Kig(x) = /4 — x + = x%/4 — 0.3248642%° — 0.0080870x° -
+0.16643(1 -+ x%/40) 5 In x;

Kiy (%) = 2/3 — mx/4 + 0.55% — %xi* +

+0.0916327x* 4 0.0014591x° —
—0.0416 (1 + x%¥/60) x* In x,

The coefficients of x5 with the highest power are
corrected so that exact values of the functions Kiy (1)
are obtained. The factor 0.9986 in the last term of the
first formula is chosen to reduce the error. The error
in the range 0 = x < 1.2 is of tenths of one per cent and
decreases with increase in the order of the function.
In practice the values of the optical thicknesses usu-
ally lie in this range if the radiation incident at large
angles (from distant regions) is ignored. For large x
Primak [4] proposes formulas with exponential func-
tions.

The reduction of three-dimensional problems to
two-dimensional problems required investigation of
the incomplete integrals Kip(x,a¢), where aq is the
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limiting angle. The larger x and n and the closer the
value of ¢, to 7/2, the smaller will be the error due
to inclusion of radiation from nonexistent regions in
the interval (o, 7/2).

In conclusion we must once again point out that all
the formulas here are for direct fluxes. Reradiation
and scattering of the fluxes can be taken into account
by solution of the integral or equivalent equations.
The calculation of the coefficients presented here is
an essential preliminary step. :

NOTATION

0 —angle between normal to element of surface and ray; dFy and
dF,-surface elements; {, m—distance between them; S~angle between
normal to dF and projection of ray on cross section of two-dimensional
body; a—angle between this projection and the ray, cos®t = cosoccosﬁ;
f(»)~emission characteristic; ap-dimensionless coefficients; Q-equi-
valent solid angle determined from (1); k, m™t—coefficient of attenu-
ation of ray; x—optical distance with respect to attenuation of ray;
dugzsolid angle at which element dF, iicseen from point dFy; Kip(x) =

= jexp (—x/cos ) costtad a; En(x) = [exp (—xt) xx t77dt; € p=ca-

eff(i)cient of irradiation for point dF; (pli—mean coefficient of irradia-
tion; L-extent of surface Fy; qeffy W/m2-density of hemispherical
effective emission of surface 2; 75, W/m2~density of bulk incident
flux at point dF;; m=coefficient of spatial distribution of incident
direct flux; u-coefficient of utilization of source; o ¢1imiting angle
for three-dimensional system.
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